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The rise and fall of cooperation through reputation
and group polarization
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Humans exhibit a remarkable capacity for cooperation among genetically unrelated indivi-

duals. Yet, human cooperation is neither universal, nor stable. Instead, cooperation is often

bounded to members of particular groups, and such groups endogenously form or break

apart. Cooperation networks are parochial and under constant reconfiguration. Here, we

demonstrate how parochial cooperation networks endogenously emerge as a consequence of

simple reputation heuristics people may use when deciding to cooperate or defect. These

reputation heuristics, such as “a friend of a friend is a friend” and “the enemy of a friend is an

enemy” further lead to the dynamic formation and fission of cooperative groups, accom-

panied by a dynamic rise and fall of cooperation among agents. The ability of humans to

safeguard kin-independent cooperation through gossip and reputation may be, accordingly,

closely interlinked with the formation of group-bounded cooperation networks that are under

constant reconfiguration, ultimately preventing global and stable cooperation.
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Compared to many other social animals, humans cooperate
in networks of genetically unrelated individuals1,2, possibly
because humans are uniquely capable to observe the

actions of others3, track their reputation4–7, and exchange infor-
mation on the trustworthiness of strangers through gossip8–11.
Yet, cooperation among humans is neither universal nor stable.
Throughout history, humans organized themselves into social
groups characterized by high in-group cooperation and out-group
defection12–15. Furthermore, cooperation within and between
groups fluctuates and cooperation networks constantly change,
reconfigure themselves16–18, or completely vanish18,19. Indeed,
hunter gatherer societies sometimes fight, cooperate, or merge to
larger groups that then break up again18. Likewise, throughout
history, alliances and coalitions within and between nation states
formed, fell apart, and re-emerged again20,21.

Why cooperative groups and networks of unrelated individuals
form, break-up, and reconfigure themselves, can be explained well
on the basis of human tendencies to rely on reputation and
indirect reciprocity mechanisms4,5,22–25. Likewise, reputation and
indirect reciprocity based on past experience or friendship can
also explain why human cooperation is in-group bounded and
hardly extends to members of out-groups12,22,26–29. To date,
however, these two lines of discovery emerged in relative isola-
tion. Moreover, past work on reputation and indirect reciprocity
assumed some form of fixed group structure based on genetic
relatedness or affiliation cues (“green beards”) to explain when
and why both group fission-and-fusion and parochial coopera-
tion can emerge14,27,28,30–32.

Here, we report simulations in which agents have private
information on the cooperativeness of other interaction partners,
exchange information on others (viz. gossip) and use such
reputation information heuristically when deciding to cooperate
with others. We find that without assuming relatedness or
explicitly modelling group affiliation, a set of intuitively plausible
adaptations in the reputation heuristics can lead to (i) the
dynamic emergence of group structures, that are (ii) under con-
stant reconfiguration and (iii) marked by in-group bounded,
“parochial” cooperation. Combined, our findings suggest that
reputation heuristics can explain both the emergence of parochial
group structures and the dynamic rise and fall of groups and
cooperation networks among unrelated individuals.

Results
Model. Point of departure in our analysis is a population of
agents (e.g., individuals or groups) that randomly meet and
interact with each other. They have the option to cooperate or
defect. When two agents cooperate, they strengthen their rela-
tionship by r. However, if the opponent decides to defect, the
agent decreases its relationship with this agent by r. Before
deciding to cooperate or defect, they both consult other agents in
the population about their relationship with, and hence opinion
about, the other agent. They do not trust this opinion blindly, but
weigh it by their own relationship with the agent that they receive
an opinion from. This leads to four reputation heuristics first
described by Heider33, that determine the likelihood that an agent
A will cooperate with another agent B. An example may illustrate
that; Agent A has a positive relationship with agent C and C has a
positive opinion about B. This increases A’s likelihood to coop-
erate with B, since “a friend of a friend is a friend”. A also has a
positive relationship with agent D who has a negative opinion
about B. This will decrease A’s likelihood to cooperate with B,
since “an enemy of a friend is an enemy”. Further, A has a
negative relationship with E who is positive about B. This will
further decrease A’s likelihood to cooperate with B, since “a friend
of an enemy is an enemy”. And lastly, A has a negative

relationship with agent F who is negative about B, which will
increase A’s likelihood to cooperate with B, since “an enemy of an
enemy is a friend”.

While these four reputation heuristics exhaust all possible
configurations, they are variably applied. Sometimes, cooperation
emerges on the basis of the last two “enemy” heuristics. During
the cold war, for example, the US allied with the Afghan
Mujahedeen to fight their common enemy, the Soviets. However,
such “enemy” heuristics require that agents take the opinion of
those with whom they have a negative relationship into account.
Agents may not do this, because they are simply not interested in
the opinion of agents they have a negative relationship with, they
distrust and discount information from such agents, or such
agents are not forthcoming with reputation information. In all
these cases, decisions to cooperate have to be based on the first
two “friendship” heuristics only. Accordingly, we introduce two
types of agents—Heider agents and friend-focused agents—in
a population of size n. Whereas Heider agents take opinions of
both friends and enemies into account, hence rely on all four
reputation heuristics, friend-focused agents only consult friends
in their decision to cooperate (“a friend of a friend is a friend” and
“an enemy of a friend is an enemy”). Reputation based on Heider-
rules can be represented in an m × n reputation matrix in which
the column vector ny represents the opinions agents have about
an agent y, the row vector mx represents the relationships that
an agent x has with all other agents, and mx × ny is the aggregated
weighted opinion of an agent x towards an agent y. This
aggregated weighted opinion determines the likelihood that agent
x cooperates or defects when meeting agent y. For friend-focused
agents, mx is replaced by m′

x where m′
x =max{0, mx}.

Network polarization. Through multiple encounters and
dynamic relationship updating based on these rules, a population
of Heider agents enters a balanced state of one large group (with
probability p= 0.07, based on simulations with group-sizes
between 10 and 120) or, more likely (with p= 0.93), two
groups marked by high in-group cooperation and out-group
defection (Fig. 1a). Under the same parameters, a population
of friend-focused agents build smaller, more scattered commu-
nities, marked by high cooperation within these communities
but no cooperation across communities (Fig. 1b). We refer to
this transition from many small communities to a few large
communities as polarization. A population of Heider agents
with two opposing groups is hence maximally polarized. But what
happens in mixed populations of Heider and friend-focused
agents? As exemplified in Fig. 1c, already a minority of Heider
agents can lead to a great increase in group-size, and hence a
more polarized network state.

With every additional Heider agent in the population, and
across varying population sizes, the number of communities (i.e.,
groups of agents that are densely interconnected within, but not
between groups, as measured by the Louvain method for
community detection34) exponentially declines by a factor of
τ= 4.9 (exponential decay regression, Fig. 2a). Alongside a more
polarized state of the cooperation network, a small number of
Heider agents increases cooperation due to larger and more
densely interconnected communities. More specifically, with
every additional Heider agent, population-level cooperation
increases by a factor of 1− τ between 5.5 (n= 10) and 83.7
(n= 120; Fig. 2b). Especially friend-focused agents benefit from
Heider agents, as their cooperation-rates increase (Fig. 2c). In
short, simple reputation rules based on gossip and reputation
memory can lead to closely interconnected groups that have
clear group boundaries marked by high in-group cooperation and
out-group defection. Already a few Heider agents can starkly
influence group formation and group size.
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Evolutionary dynamics. To see whether reputation-based deci-
sions to cooperate or defect influence the agent’s relative success in
the population and are evolutionary stable against pure defection,
agents engaged in a Prisoner’s Dilemma. Playing C costs c and
gives the other agent benefit b, where b > c, while playing D is
costless and does not benefit the other agent, b= c= 0. After
repeated interactions, payoffs influenced the likelihood that an
agent’s strategy would spread in the population or die out. Spe-
cifically, after i periods, one agent is randomly selected to adapt
its strategy. With probability u, the agent adopts a strategy at
random (random mutation). With probability 1− u the agent
adopts a strategy of another agent in the population based on the
relative success of this agent (which mimics genetic evolution or
social learning). Further, we introduced a third type of agent, the
always-defect type (or simply “defectors”/“free-riders”), that
attempts to take advantage of other agents by always playing the
selfish option D.

Figure 3 shows the observed evolutionary dynamic across time.
In high cooperation periods, the population consists of a majority
of friend-focused and a minority of Heider agents (Fig. 3a).
However, Heider agents eventually spread, take over, and polarize
the population. At this stage, the population becomes vulnerable
to invasion by defectors. This follows from the fact that Heider
agents are more likely to cooperate with isolated agents, because
of shared negative connections to other agents (the “enemy of my
enemy is my friend” principle, see also Supplementary Note 2).
While in combination with friend-focused agents, this character-
istic helps to make connections with other groups, Heider agents
are unable to systematically isolate defectors. Thus, Heider’s four
reputation principles and the concept of psychological transitiv-
ity, are highly exploitable by free-riders. As a result, cooperation
declines and because the population transitions to a state of
defection, the group structures dissolve. In this state, friend-
focused agents can emerge again and build small isolated
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Fig. 2 Heider agents increase cooperation, group welfare, and group polarization. a The average number of communities decreases (measured by the
Louvain method for community detection34). Hence, the population becomes more polarized, as the number of Heider agents increases, across different
population sizes (green line: n= 10, dark blue line: n= 20, light blue line: n= 40, yellow line: n= 60, red line: n= 120). b Meanwhile, cooperation rates
increase with increasing numbers of Heider agents, and c friend-focused agents (light blue dots) benefit from Heider agents (dark blue dots), as their
average welfare increases

a b c

Fig. 1 Polarization through reputation. Emerging community networks in small (n= 20, upper panel) and large (n= 120, lower panel) populations of
a Heider agents, b friend-focused agents, and c a majority of friend-focused agents (light blue dots) together with a minority (10%) of Heider agents (dark
blue dots). Links between agents represent mutually positive relationships between two agents and hence a high likelihood to interact cooperatively
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communities that strictly cooperate with their in-group. After
spreading, single Heider agents appear again and increase both
cooperation and community-size. In short, we observe a dynamic
rise and decline of cooperation (Fig. 3b), accompanied by cycles
of group-formation and group-disintegration (Fig. 3c, Supple-
mentary Figure 1).

The speed of this evolutionary dynamic and survivability of
cooperation strategies depends on the benefit of cooperation and
the interaction frequency. With higher interaction frequency and
return of cooperation, the relative proportion of defectors in the
population decreases (Fig. 4a) and mutual cooperation increases
(Fig. 4d; see also Supplementary Note 1).

Pairwise invasions. We verified to which extent these dynamics
depend on the interaction of friend-focused and Heider agents by
repeating the simulations with one single agent type (either
friend-focused or Heider agents) performing against free-riders

(see also Supplementary Note 2 and 4). We find that without
friend-focused agents, Heider agents alone do not survive against
free-riders (Fig. 4c). Friend-focused agents without Heider agents,
on the other hand, survive against free-riders (Fig. 4b), but only
build small communities that result in very low population-wide
cooperation (Fig. 4e). Hence, both friend-focused and Heider
agents are needed to achieve periods of high, albeit unstable,
cooperation.

As we can see in Fig. 3a, Heider agents do not strictly dominate
friend-focused agents, leading to periods of co-existence of these
two types. In simulations without free-riders, we can examine this
dynamic more closely (Fig. 5a). Replicating the findings without
selection pressure (Fig. 2), an increase of Heider agents is
accompanied by a decrease in the number of communities (τ=
13.2, exponential decay regression)—the polarization effect of the
full Heider heuristics. Importantly, the ability of Heider agents to
establish positive connections to agents outside of the friendship
network (“the enemy of my enemy is my friend”) leads to an
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Fig. 3 Fission–fusion dynamic of reputation-based cooperation. As the number of Heider agents (dark blue line) in a population of friend-focused agents
(light blue line) increases, the risk of invasion by free-riders (red line) increases (a). A population of free-riders in turn gets invaded by friend-focused
agents. Following this dynamic, cooperation (green line) and successful exploitation (magenta line) fluctuates (b) and community structures emerge and
dissolve as a function of the population dynamic (c)—based on n= 100, 4 × 105 iterations, i= 10, c= 1, b= 4, r= 0.3
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initial advantage over friend-focused agents. They form more
positive outgoing connections (Fig. 5c) and have higher relative
fitness, initially (Fig. 5d). As Heider agents spread in the
population, this gap between Heider agents and friend focused
agents disappears. Friend-focused agents take advantage of the
more polarized network structure that is established by Heider
agents. Eventually, friend-focused agents have the same fitness as
Heider agents (Fig. 5d). In this state, the population can make a
neutral drift to friend-focused agents again. The invasion-success
of Heider agents in a population of friend-focused agents depends
on the benefit of cooperation and the interaction frequency. Only
with moderate to high interaction frequency, Heider agents have
enough time to polarize the network and their initial advantage
over friend-focused agents is higher with higher returns of
cooperation (see also Supplementary Note 2).

Memory constraints. Results thus far were constrained by
assuming that agents can consult all other agents in the popula-
tion and were able to take their opinion into account. Realisti-
cally, however, the ability to process information about others is
constrained by and depends on cognitive abilities like memory
capacity. Such cognitive abilities considerably changed through-
out natural evolution35,36 and the access to and exchange of
opinions may have changed throughout human history as a
function of the ability to write and read, the flow of information
through logistic systems like mass media, and innovations in
information technology like the internet. We therefore modelled

information constraints by allowing agents to only store opinions
of a restricted number of k agents, with whom the agent has
the most extreme relationships. Information constraint can
be either considered a limitation on cognitive capacity of agents
(i.e., memory) or limited information flow based on cultural
development.

We find that with larger memory, cooperative network
relationships sharply increase among reputation sensitive agents
(Fig. 6a, β= 5.4). Further, in competition with free-riders,
the relative proportion of Heider agents among reputation-
sensitive agents increases by β= 0.1 percentage points per
memory bit (Fig. 6b). Larger memory, hence, increases global
cooperation (β= 0.3 percentage points per memory bit), but
also leads to faster defection-cooperation cycles and more
rapid fission-fusion group dynamics (Fig. 6c). We observe 6, 19,
and 24 defection–community building–polarization cycles per
1000 generations for low, medium, and high memory and
information transmission, respectively (see also Supplementary
Note 3). Hence, higher transmission capacity of reputation
information increases the speed and interconnectedness of group-
bounded cooperation at the cost of faster reconfigurations and
fission–fusion dynamics.

Discussion
Others before us noted that the unique capability of complex
symbolic communication paired with large episodic memory,
conceivably driven by the reorganization of the prefrontal cortex
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throughout primate evolution37,38, may have allowed humans to
cooperate on a large scale, independent of genetic relatedness23,39.
Our results shed light on how such cooperation can emerge based
on memory, gossip, and simple engagement rules. Heider’s
reputation heuristics align well with real-world social structures,
including interpersonal relationships40 and international alliances
and coalitions41. Our findings also resonate with results from
behavioral experiments on the role of reputation, group forma-
tion, and memory in cooperation17,42–46. In particular, it has been
shown that more information on the past actions of other players
(i.e., memory) influences network formation and leads to a higher
frequency of cooperation43. Further, information exchange on
past actions can increase cooperation47,48 (see however ref. 42),
and participants readily share gossip on the cooperativeness of
interaction partners, which subsequently increases cooperation10.
Reminiscent of the “a friend of my friend is my friend” heuristic,
experiments have shown that humans integrate reputation
information about others through gossip10,49, that humans con-
dition their decisions to cooperate on gossip received from others,
with cooperation being increased (withheld) when gossip suggests
the partner could (not) be trusted10,49,50. This in turn mediates
the formation of social networks and communities51. Relatedly,
work on extended intergroup contact shows that knowledge of
a friend’s positive contact with an out-group member leads
people to develop more positive attitudes towards that out-group
themselves52–54, suggesting that intergroup relations can change
as a function of indirect reciprocity. The operation of the
“a friend of my enemy is my enemy” heuristic is seen in work on
vicarious retribution whereby an individual aggresses out-group
members affiliated with an out-group member who harmed some
in-group member other than the individual him or herself55.

In our simulations, Heider’s reputation heuristics, and adap-
tations therein, can also account for the dynamic increase and
decline of cooperation within and between (groups of) indivi-
duals, the fission–fusion dynamics of groups of unrelated indi-
viduals and, perhaps even the rise and fall of civilizations as
seen throughout human history19. Especially cooperation based
on mutual enmity towards third parties (“the enemy of my enemy
is my friend”) operates as a double-edged sword: It leads to larger
and more interconnected groups, but to more polarized networks
in which whole populations become vulnerable to defection.
Friend-focused agents, in contrast, successfully shield themselves
against defectors at the price of smaller friendship networks and
low population-wide cooperation, revealing a trade-off between
exclusively cooperating in small friendship-networks and
attempting to cooperate with agents outside of the friendship-
network at the risk of exploitation.

The oscillation between cooperation and defection is a recur-
rent theme in the evolution of cooperation that has also been
observed in models based on tags (“green beard”)27,32, voluntary
public goods participation56, direct reciprocity57, imitation26,
pool-punishment58,59, spatial migration60, and anti-social
punishment61,62 (see ref. 63 for a review). Going beyond clear
group affiliation via tags (“green beards”)27,64, our results
demonstrate that the reliance on reputation heuristics and gossip
is sufficient to observe the emergence of dynamically changing
group affiliations, group-bounded cooperation, as well as fluc-
tuations in global cooperation among unrelated kin.

Previous work (e.g., refs. 4,7,23,39) has extensively investigated
image-scoring rules that assign reputation based on the action of
a “donor” and the reputation of a “receiver”, like: “help good
people and refuse to help otherwise” (stern judging). This work
led to eight rules that have been shown to stabilize cooperation
through indirect reciprocity (“the leading eight”)65,66. Impor-
tantly, the “leading eight” rely on the ability to observe the actions
of others in the population to a certain extent and apply a clearly

defined social norm to assign reputation. In contrast, reputation
based on Heider rules relies on private experiences of other agents
weighted by own experiences with this agent. Agents value the
opinion of another agent to the extent that they had good
experiences with this agent. As such, Heider rules may be parti-
cularly important when observing actions is difficult but
exchanging opinions is easy. As such, invoking Heider rules can
help to understand the emergence of cooperative group-clusters
even when social norms are not clearly defined and actions are
based on personal affinity or enmity and gossip. Since private
experience is noisy and also depends on chance (as in our model
at initialization), arbitrary group boundaries emerge between
agents that restrict the extent of population-wide cooperation
even when the underlying decision-rules of agents are similar.

Beyond cooperation, the role of reputation and gossip in the
emergence of groups may have important implication for attitude
formation, how political opinions spread and polarize (e.g.,
ref. 67), or how selective information exchange shapes coalitions
and rivalries. Our simulations finally suggest that human
friendship-networks based on reputation and information trans-
mission can considerably and quickly change with cultural
development and modern technology. As long as cooperation is
reputation-based, group structures can be volatile and coopera-
tion among humans may not be, nor become, universal and
stable.

Methods
Model. In our simulations, agents from a finite population of size n go through
three discrete stages in each iteration: (1) Random matching. Every agent is ran-
domly paired with another agent. (2) Action choice. Every agent chooses action
{C, D}. (3) Relationship updating. Every agent updates their relationship with the
paired agent.

The action-pair has consequences for the agents’ relationship. In case two
agents x and y play (C, C), the relationship sxy and syx increases by r. If the
opponent plays D, the relationship decreases. Specifically, if the opponent x plays
D, the relationship syx decreases by r. If the opponent y plays D, the relationship sxy
decreases by r. An agent x that defects, while the opponent y cooperates does not
alter the relationship sxy, to avoid negatively correlated relationships between two
agents across time (i.e., in round t, x is positive towards y and y is negative towards
x, in round t+ 1, x is negative towards y and y is positive towards x and so on).

Relationships can be represented in a quadratic m × n reputation matrix S. The
diagonal represents the relationship every agent has with itself and is fixed to 1;

Sm;n ¼

1 s1;2 � � � s1;n
s2;1 1 � � � s2;n

..

. ..
. . .

. ..
.

sm;1 sm;2 � � � 1

0
BBBBB@

1
CCCCCA
; where si;j 2 Qj � 1 � si;j � 1

n o
andm ¼ n

ð1Þ

Each row vector mx (relationship vector) represents the relationship an agent x
has with every other agent (and itself), while each column vector nx (reputation
vector) represents the opinion every agent has about agent x (i.e., their respective
relationship with agent x).

For the main analyses, we define two reputation-sensitive agents that differ in
how they determine when to play C or D.

Heider agents. When paired with an agent y, a Heider agent x takes the
reputation vector ny and multiplies each element i (opinions about y of agent i)
by their relationship with the respective agent i, leading to the relationship score
rs=mx × ny. If a population consists of Heider agents only, the relationship scores
of the population are simply S2.

The relationship score is thus the weighted and aggregated product based on the
four relationship heuristics, first outlined by Heider33: A friend of a friend is a
friend (positive relationship sxi and positive opinion siy), an enemy of a friend is an
enemy (positive relationship sxi and negative opinion siy), a friend of an enemy is an
enemy (negative relationship sxi and positive opinion siy), an enemy of an enemy is
a friend (negative relationship sxi and negative opinion siy).

Friend-focused agents. Compared to Heider agents, a friend-focused agent x only
takes opinions of friends into account. Friends are agents with whom the rela-
tionship sxi > 0. The relationship-vector for a friend-focused agent is thus replaced
with m′

x where m′
x =max{0, mx}. Accordingly, the relationship score rs=m′

x × ny
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is the weighted and aggregated product based on the opinions of friends. Friend-
focused agents, hence, only act upon the two friend-heuristics: “a friend of a friend
is a friend” and “an enemy of a friend is an enemy”.

The relationship score rs determines the probability to choose C based on the
logistic decision function:

p Cð Þ ¼ 1
1þexpð�rs=0:2Þ and 1� p Cð Þ ¼ pðDÞ ð2Þ

Network polarization. In the simulations, agents repeatedly and randomly met,
chose action {C, D}, and updated their relationship accordingly. Note that we
specifically did not manipulate meeting probability based on relationship-score as
in other models68, since cooperation and group structure become a function of
meeting probability and cannot be disentangled anymore.

Supplementary Movies 1–3 demonstrate the emerging network structure in a
population of n= 20 agents. The reputation matrix S is a 20 × 20 identity matrix at
initialization and updated according to the rules described above. Supplementary
Movie 1 shows the relationship network for 20 Heider agents, Supplementary
Movie 2 shows the relationship network for 20 friend-focused agents, and
Supplementary Movie 3 shows the relationship network for 16 friend-focused and
a minority of 4 Heider agents.

For the results underlying Fig. 1, results were analyzed after 105 iterations (i.e.,
100,000 random interactions per agent). For each parameter combination
(population-size and agent-composition), we repeated the simulation 50 times to
obtain reliable estimates of the resulting network structure and cooperation rates
across agent-types.

Evolutionary dynamics. To analyze the success of reputation strategies, we ran
evolutionary simulations. Agents were repeatedly randomly matched for i itera-
tions (interaction frequencies) and accumulated payoff based on their own and
their partner’s action. In each interaction, they played a prisoner’s dilemma in
which they incurred a cost c for playing C (x= 1, otherwise x= 0), and received
a benefit b when the partner played C (y= 1, otherwise y= 0), resulting in the
following payoff function:

πx ¼
Pi
t¼1

byt � cxt ; where c < b ð3Þ

For the evolutionary simulations, we also introduced a third agent-type: the always-
defect agent (or simply defector or free-rider). The always-defect agent does not
engage in relationship-scoring or updating and always chooses the selfish option D.

After the ith iteration, one random agent of the population was selected to
adapt its strategy based on the frequency dependent Moran process with an
exponential payoff function32,62,69. With probability u, the agent would adopt one
of the three strategies described above with equal probability (random mutation).
With probability 1− u, the agent would adopt a strategy of another agent x in the
population proportional to eπx . Strategy changes can be interpreted as either
genetic evolution or social learning.

When adopting another strategy based on fitness, the probability that the
number of agents with a particular strategy changes from n to n+ 1 is given by:

pnA!nAþ1
¼

PnA
i¼1

eπAiPnA
i¼1

eπAiþ
PnB

i¼1
eπBiþ

PnC
i¼1

eπCi
n�nA
n ð4Þ

pnB!nBþ1
¼

PnB
i¼1

eπBiPnA
i¼1

eπAiþ
PnB

i¼1
eπBiþ

PnC
i¼1

eπCi
n�nB
n ð5Þ

pnC!nCþ1
¼

PnC
i¼1

eπCiPnA
i¼1

eπAiþ
PnB

i¼1
eπBiþ

PnC
i¼1

eπCi
n�nC
n ð6Þ

Likewise, the probability for an agent with strategy A to adopt strategy B or C is
given by:

pA!B ¼
PnB

i¼1
eπBiPnA

i¼1
eπAiþ

PnB
i¼1

eπBiþ
PnC

i¼1
eπCi

nA
n ð7Þ

pA!C ¼
PnC

i¼1
eπCiPnA

i¼1
eπAiþ

PnB
i¼1

eπBiþ
PnC

i¼1
eπCi

nA
n ð8Þ

Supplementary Movie 4 exemplifies the change in agent composition under
selection pressure in a small population of n= 20 agents. At the beginning, the
entire population consists of defectors. Eventually, defectors are invaded by friend-
focused agents that build cooperative dyadic relationships or small groups. As soon
as Heider agents appear in the population, both group size (i.e., group polarization)
and global cooperation rates increase. However, at this stage, the population
becomes vulnerable to defectors who, eventually, take over again.

Supplementary Figure 1 shows the transition matrix based on maximum
likelihood Markov chain estimations for the simulation underlying Fig. 3 (n= 100,

4 × 105 iterations, i= 10, c= 1, b= 4). Mutual cooperation in the population
increases when transitioning from a population of friend-focused to a population of
Heider agents. However, in a population of Heider agents, there is a large likelihood of
invasion by defectors, which is not the case for a population of friend-focused agents.

Parameter space. To investigate the evolutionary dynamics across a wider
parameter space, we ran simulations sampled from the parameter-space u∈ {0.01,
0.001} (mutation probability), i∈ {1, 2,…, 32} (interaction frequency), b ∈ {1, 2,…,
8} (cooperation benefit). Population size and cooperation cost was fixed to n= 100
and c= 1, respectively (resulting in the Rapoport indices of cooperation K ¼ R�P

T�S
equal to 0, 1/3, 1/2, 2/3, 5/7, 3/4, 7/9). For each simulation, we ran i × 5 × 105

iterations. For ease of interpretation, we aggregated data across mutation rates in
the figures. Additional details are presented in Supplementary Note 1 and Sup-
plementary Figures 3–4.

Pairwise invasions. To understand the invasion-cycles that we observe between
Heider agents, defectors, and friend-focused agents, we ran simulations of all
pairwise agent combinations across the parameter space. Specifically, we analyzed
friend-focused agents vs. defectors, Heider agents vs. defectors, and Heider agents
vs. friend-focused agents. This allows us to investigate (a) if and when a single
reputation-based agent can survive against defectors and (b) when and why Heider
agents invade friend-focused agents and vice versa. Additional details are presented
in Supplementary Note 2 and Supplementary Figures 5–8.

Memory constraints. We extended our main model to impose memory con-
straints on the agents, by only allowing them to store s reputation bits in the
relationship-vector mx (in all other simulations s was equal to n). Each agent was
able to memorize the most extreme relationships they have (i.e., their closest
friends and worst enemies). In case of ties, the relationship element that the agent
would forget was chosen randomly. More specifically, in each interaction, each
agent has an n-size relationship vector for all other agents in the population based
on past experience. In each step, agents forget the “weakest” relationship of the n–k
agents, i.e., the n–k opinions that are closest to zero. Hence, agents forget their
relationship for which they have not formed a strong “memory-trace”. The k
strongest relationships (closest to 1 or −1, “best friends” and “worst enemies”), on
the other hand, are memorized. The relationship to oneself, i.e., the diagonal of the
reputation matrix was fixed to 1, as in the standard model.

We investigated the effect of memory constraint on the network structure
among reputation-sensitive agents for n= 20, 40, 60, 120 that comprised 1, 2, 3, 4,
or 5 Heider agents and a memory size of 10%, 30%, 50%, 70 and 90% of the
respective group size after 105 iterations. Further, we introduced two levels of
memory constraints, s= 33 and s= 66, under selection pressure and ran
evolutionary simulations with the parameters n= 100, u= 0.01, b= 4, i= 10,
r= 0.3 and compared it to populations with perfect memory (see Fig. 6). To test
whether the obtained results are generalizable, we further ran simulations for
different parameter combinations for each memory level s. Additional details are
presented in Supplementary Note 3 and Supplementary Figures 9–13.

Sensitivity analyses. To further check the robustness and generalizability of the
obtained results, we ran several additional simulations introducing additional
agent-types, manipulating the speed at which agents form relationships, and
running simulations in a larger population.

Additional agent-types. To understand the community building properties of
Heider agents that is followed by invasions of defectors, we ran simulation in which
we introduced two additional agent types to further isolate the effect of specific
Heider rules on cooperation, on the one hand, and the vulnerability to defectors, on
the other hand.

Specifically, we define “enemy-focused agents” as agents that only take the
weighted opinion of enemies into account, but do not “trust” the opinions of
friends (i.e., only implement the “enemy of an enemy is a friend” and the “friend of
an enemy is an enemy” heuristic). This allows us to contrast the two friend-focused
Heider heuristics to the two enemy-focused Heider heuristics.

We further define “incomplete Heider agents” as agents that only implement
the first three Heider heuristics (“a friend of a friend is a friend”, “an enemy of
a friend is an enemy”, and “a friend of an enemy is an enemy”), but not the last
heuristic (“an enemy of an enemy is a friend”). Comparing the results of Heider
agents vs. incomplete Heider agents enable us to isolate the effect of the “enemy of
an enemy is a friend” heuristic on population-wide cooperation and community
building. Additional details are presented in Supplementary Note 4 and
Supplementary Figures 14–20.

Speed of forming relationships. The logistic decision function to cooperate or
defect of our model (Eq. (2)) is illustrated in Supplementary Figure 2. Each value in
the reputation matrix S was bound to lie between −1 and 1, which corresponds to a
probability close to 0 and 1 to not cooperate (defect) or cooperate, respectively.
This boundary was chosen because values above 1 or below −1 would not sig-
nificantly alter the probability of actions (C vs. D). At the same time, it gives the
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fixed value of the relationship every agent has with itself (sxx) an intuitive meaning:
The relationship to another agent is bound to be worse or as good as the rela-
tionship that the agent has to itself. For reputation, this means that an agent can
trust the opinion of another agent as much as the agent would trust its own
opinion, but not more.

The temperature parameter of the logistic function, the boundaries, and the
change in opinion/relationship r based on the action of the opponent, together,
determine how fast an agent is building a relationship with another agent and
switches from defection to cooperation or vice versa. Hence, these three parameters
determine how forgiving or punishing an agent is. The main analysis was performed
with r= 0.3. To see how the population dynamics change when agents are less or
more forgiving (hence, form relationships slower or faster), we further ran
simulations with r= 0.1 and r= 0.5, sampling across the full parameter space. With
r= 0.1, agents with a neutral opinion would increase their likelihood to cooperate
(defect) from p= 0.5 to p= 0.62 after an interaction (solely based on their own
relationship). With r= 0.5, on the other hand, agents with a neutral opinion would
increase their likelihood to cooperate (defect) from p= 0.5 to p= 0.92 after an
interaction (solely based on their own relationship). Note that changing the value r
is analogous to changing the temperature parameter of the logistic function. By
increasing (decreasing) r, the decision function becomes steeper (flatter), meaning
that fewer interactions are needed to establish a positive or negative relationship
(Supplementary Figure 2b). Additional details are presented in Supplementary
Note 5 and Supplementary Figures 21–22.

Larger population. Our main evolutionary simulations use a population-size of
n= 100, thereby approximating the size of social friendship networks70–72 or
international alliances73,74. Interestingly, the degree distribution of social networks
is usually not normally distributed but follows a power law or log-normal dis-
tribution (e.g., ref. 72). This resonates with our network structure and degree dis-
tribution that we observe in a population comprised of a majority of friend-focused
agents and a minority of Heider agents.

Small populations are more influenced by the stochasticity of the Moran process
making it easier for neutral drifts to occur. To check the robustness of the results,
in particular the dynamic shifts of agent-compositions and group fission–fusion
dynamic, we repeated the simulations with a larger population (n= 500) sampling
from the full parameter space (u ∈ {0.01, 0.001}, i∈ {1, 2, …, 32}, b ∈ {1, 2,…, 8},
and r∈ {0.1, 0.3, 0.5}). Additional details are presented in Supplementary Note 6
and Supplementary Figures 23–24.

Code availability. The code used for data analysis and simulations is available
from the corresponding author upon reasonable request.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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